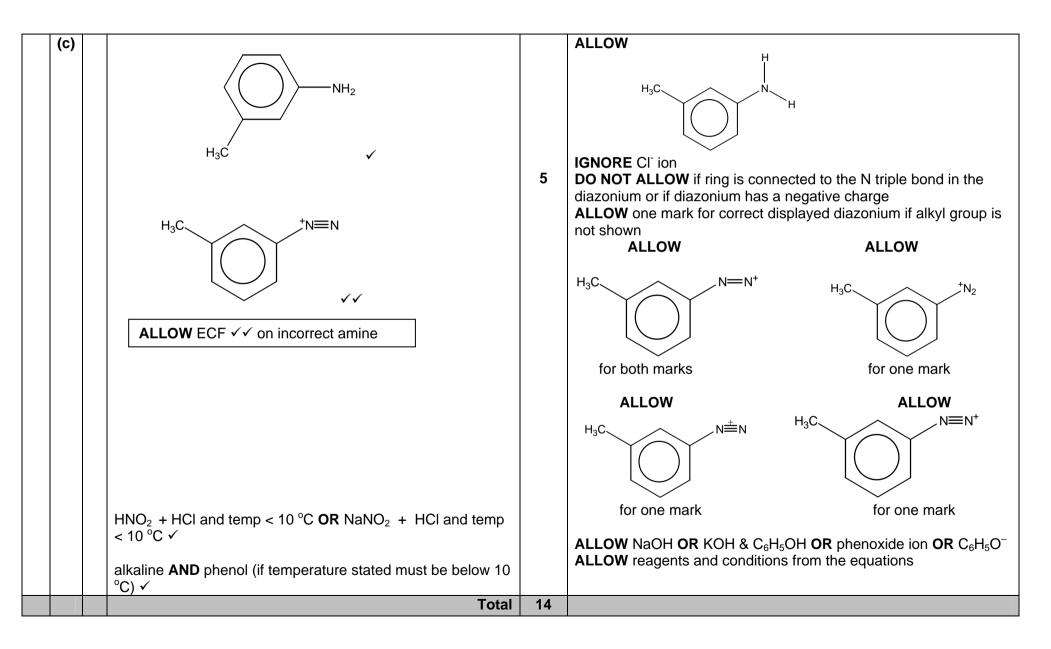

Question	er	Mark	Guidance
1 (a) (i)	er Response requires three stages • chlorination • nitration • reduction Reduction must be a later stage than nitration Mark according to which sequence chosen. Stage 1 organic product: CI CI2 AND AICI3 OR OF NO2 Chemicals: CI2 AND AICI3 OR OF NO2 Cla AND AICI3 OR OF NO2 OR OF NH2 Chemicals: HNO3 AND H2SO4 OR Stage 2 OR OF NH2 Chemicals: HNO3 AND H2SO4 Shape 3 Chemicals: Cl ₂ AND AICl ₃ Shape 4	<u>Mark</u>	Guidance Acceptable sequence of stages are: • nitration, reduction, chlorination • nitration, chlorination, reduction, • chlorination, nitration, reduction For organic products, ALLOW CellsNO2 OR CellsCI OR CellsNH2 ALLOW NO2- AND NH2- DO NOT ALLOW CICellsH4NO2 (formula ambiguous) DO NOT ALLOW molecular formulae IGNORE any additional structures shown eg 2- (ortho) and 3- (meta) substituted isomers In chemicals boxes, IGNORE temperatures IGNORE 'catalyst' For chlorination chemicals, ALLOW Cl2 AND FeCl3 OR Cl2 AND Fe OR Cl2 AND Halogen carrier For reduction chemicals, 'concentrated' not required for HNO3 OR H2SO4 BUT DO NOT ALLOW 'dilute' For Sn/HCl ALLOW addition of NaOH also IF it is clear that it is a second step BUT DO NOT ALLOW Sn AND HCl AND NaOH IGNORE catalyst

Questi	on	er	Mark	Guidance
(c)	(i)	Various possibilities, eg: H_3C \xrightarrow{O} \xrightarrow{O} \xrightarrow{N} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{P} \xrightarrow{O} \xrightarrow{P} \xrightarrow{P} \xrightarrow{V}		ALLOW Kekulé mechanism mark 2 a = 1 a = 1
		Reaction with Na $H_3C - C - N - O^{-}Na^+$ $H - \sqrt{-}$	2	 ALLOW ONA OR O⁻ as alternative to O⁻Na⁺ DO NOT ALLOW O–Na OR O⁻Na (i.e. Na without charge) –ONa must be in correct position shown ALLOW for side chain: CH₃CONH but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect)


Question	er	Mark	Guidance
(C) (ii)	Hydrolysis with NaOH(aq) H ₃ C C O ⁻ Na ⁺ H ₂ N O ⁻ Na ⁺ Mark independently	2	On BOTH structures, ALLOW ONa OR O ⁻ as alternative to O ⁻ Na ⁺ DO NOT ALLOW O–Na OR O ⁻ Na (i.e. Na without charge) –ONa must be in correct position shown on 2nd structure ALLOW CH ₃ COONa/ CH ₃ CO ₂ Na OR CH ₃ COO ⁻ / CH ₃ CO ₂ ⁻ ALLOW one mark for carboxylic acid AND phenol, rather than sodium salts: $H_{2}N$ OH $H_{3}C$ OH $H_{2}N$ OH ALLOW NH ₂ -, CH ₃ - IGNORE any additional inorganic products in boxes (even if incorrect)
	Total	15	

Que	stic	on	Expected Answers	Marks	Additional Guidance
2	a		Bond length intermediate between/different from (short) C=C and (long) C–C \checkmark ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark Only reacts with Br ₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack \checkmark Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
	b	-	compound A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	4	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

Question	Expected Answers	Marks	Additional Guidance
	compound D		ALLOW if + charge is floating between the two Ns only if it is closer to the correct N allow not allow $n = N$
	HO		ALLOW any of OH
		~	OH O'
			ALLOW O [−] in place of OH

Question	Expected Answers	Marks	Additional Guidance
ii	<u>mark 1</u> $HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + 2HSO_4^- + NO_2^+ \checkmark$		Equation to show formation of NO_2^+ ion \checkmark ALLOW HNO ₃ + H ₂ SO ₄ \rightarrow H ₂ O + HSO ₄ ⁻ + NO ₂ ⁺ HNO ₃ + H ₂ SO ₄ \rightarrow HSO ₄ ⁻ + H ₂ NO ₃ ⁺ \rightarrow H ₂ O + NO ₂ ⁺
If NO ₂ is in correct position	<u>mark 4</u> – curly arrow from C–H bond back to reform π ring <u>AND</u> correct products \checkmark	5	ALLOW mark 2 curly arrow must be from 1,3- dimethylbenzene to NO_2^+ and ECF for marks 3 and 4
do not penalise even if compound A in	H NO ₂ NO ₂		DO NOT ALLOW intermediate
b(i) is not in correct position	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		π -ring must be more than $1/2$ + way up
	mark 2 arrow from π ring to ${}^{+}NO_{2} \checkmark$ mark 3 intermediate with π ring broken in the correct place \checkmark Link to compound A in part (i) - cannot score full marks [in b(i) & b(ii)] if NO2 is not adjacent to a methyl		ALLOW CH ₃ s shown
			ALLOW H_3O^+ + $HSO_4^- \rightarrow H_2O$ + H_2SO_4
iii	2 ✓	1	No other correct response
	Total	13	

Question		Expected Answers		Additional Guidance	
3 (a)		$\left\langle \bigcirc \right\rangle$ + Br ₂ \longrightarrow $\left\langle \bigcirc \right\rangle$ Br + HBr \checkmark	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+	
(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt <u>and</u> bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol	
	(ii)	1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures	
	(iii)	MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks benzene <u>electrons</u> or <u>m-bonds</u> are delocalised \checkmark phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in Br ₂ OR phenol can polarise the Br ₂ OR cyclohexene can polarise	5	 ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density 	
		electron density ✓		bonding correctly described	

